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ABSTRACT

Genetic expression and control pathways can be suc-
cessfully modeled as electrical circuits. To tackle large
multicellular and genome scale simulations, the massive-
ly-parallel, electronic circuit simulator, XyceTM [11],
was adapted to address biological problems. Unique to
this bio-circuit simulator is the ability to simulate not
just one or a set of genetic circuits in a cell, but many
cells and their internal circuits interacting through a
common environment. Additionally, the circuit simula-
tor Xyce can couple to the optimization and uncertainty
analysis framework Dakota [2] allowing one to find vi-
able parameter spaces for normal cell functionality and
required parameter ranges for unknown or difficult to
measure biological constants. Using such tools, we in-
vestigate the Drosophila sp. segmental differentiation
network’s stability as a function of initial conditions.
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1 INTRODUCTION

Expression of a genetic code defines characteristics
of a given organism. As an organism grows and adapts
to its local environment specific elements of its genetic
code are expressed while other elements are suppressed.
Complex control mechanisms exist to regulate the ex-
pression of genes during the life of a cell. [6]–[8]

To fully appreciate how a genetic repository or ge-
nome translates into a functioning cell, one must under-
stand the control mechanisms of genetic expression. Ge-
netic products of a given gene can promote or suppress
the further production of that gene creating a simple
feedback loop. [6]–[8] Similarly, genetic products from
other genes can regulate the production of a given gene
creating complex feedback loops or expression cascades.
Feedback loops and cascades are not limited to a single
cell, but can span an entire cell culture or cellular gen-
eration influencing differentiation and development. [7]

As an abstraction to better understand genetic ex-
pression and control, genetic material and its associ-
ated control mechanisms can be viewed as a genetic
switch. [1], [6]–[9] Such a switch can be modeled as an
electrical circuit where a signal (the transcript from a

section of DNA) is generated and altered as it interacts
with other components during its propagation. This
analogy is far from perfect as there are significant dif-
ferences in the switching speed and signal to noise ratio
of a genetic circuit versus an electric circuit. However,
this analogy allows one to consider very complicated,
dynamic control circuits while investigating expression
stability and population dynamics. [7]

To understand and model cellular differentiation, we
have simulated the Drosophila sp. segment polarity gene
network for a 2D array of cells connected through a com-
mon diffusion limited environment. In such an environ-
ment, cells experience local concentrations of differentia-
tion stimuli determined by neighboring cells production
and consumption rates. These local stimuli effect the ge-
netic and metabolic regulatory networks within the cell
directing eventual development. Specifically, the initial
conditions and history of a given cellular environment
strongly influence a cell’s future development. For this
model problem, we have examined functionality and the
systems sensitivity to initial noise by using Dakota [2] to
explore the systems parameter space and response func-
tions. We are able to demonstrate that the Drosophila
sp. differentiation network is very sensitive to noise in
its initial conditions.

2 FRAMEWORK

A biological or chemical simulation working within
an electrical circuit context requires a translation frame-
work to convert from the former domain to the latter.
In electronics, a fundamental quantity is charge while in
the biological domain, one is often concerned with con-
centration of a given chemical compound. Given a con-
trol volume, such as the volume of a cell, concentrations
can be converted to mass. As a basis for a biological to
electrical problem conversion, this work will equate mass
of a given chemical species with charge. Each pathway
or wire in a circuit will carry a different chemical species
and the charge on that wire will denote the mass of that
chemical species present in the simulation.

Continuing this analogy, electrical current which is
the timed rate of change of charge is equivalent to the
rate of mass change, i.e. how quickly a compound is
used or created by the system or mass flux through the



Chemical, Biological Electrical
Domain Domain
mass charge

mass flux current
concentration* voltage

stoichiometric conservation Kirchhoff’s voltage law
mass conservation Kirchhoff’s current law

Table 1: Equivalents between the chemical, biologi-
cal domain and the electrical circuit modeling domain.
*Note, that there is no equivalent to volume in the elec-
trical domain. Thus for one to strictly employ concen-
tration one must first define a consistent system volume
such as a biological cell or culture plate.
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Figure 1: A tryptophan regulated switch. An oscillating
input level of tryptophan, trp, controls the production
of the gene products trpEDCBA.

system. Voltage is a relative measure of electrical po-
tential. The chemical or biological analog to voltage
here is chemical concentration provided one is measuring
voltage relative to a neutral ground. Kirchhoff’s Volt-
age Law, KVL, which requires the voltage drop around
any closed circuit to be zero [5] enforces a stoichiomet-
ric balance on chemical reactions. Kirchhoff’s Current
Law, KCL, which requires the current flow into a cir-
cuit node balance current flow out of that node enforces
conservation of mass within the system. For reference,
table 1 summarizes the analogous terms joining chemi-
cal, biological problems and electronic circuit problems.
It is important to note that with such a framework in
place, we are not ignoring any important kinetic or stoi-
chiometric aspects of the biological problem just to work
within an electrical circuit domain. Rather, we are using
this framework to take advantage of existing simulation
capabilities developed for electrical modeling problems.

3 A GENETIC SWITCH

As an example of a biologically inspired circuit, fig-
ure 1 demonstrates a genetic switch in an E. coli tryp-
tophan regulation circuit. Focusing primarily on the
switching, this problem is posed as a digital circuit.
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Figure 2: The tryptophan switch in action. Only when
tryptophan, trp, levels drop are the gene products,
trpEDCBA, available.

Thus, specific reaction rates and binding constants are
ignored so that only tryptophan induced regulation is
seen. Casting the problem this way allows one to study
cases where little or no kinetic, stoichiometric or diffu-
sion data are available and one wishes to test hypothet-
ical control systems.

In figure 1, a repressor, apoRep, and mRNA are pre-
set at constant levels and depicted as constant voltage
sources. Tryptophan, trp, concentration oscillates and
it is implemented as a time dependent source. If trp and
apoRep are present then an activated repressor holoRep
is formed as indicated by the AND gate. The presence
of the activated repressor deactivates the operator, opr
via a NOT gate. Without opr, production of the trypto-
phan controlled gene products, trpEDCBA, is shut down.
Figure 2 graphically shows the genetic switch reacting
to changes in the applied tryptophan level. While this
example is very simple, it demonstrates that biological
control concepts can be mapped into a circuit model.
More importantly, this simple switch is easily embed-
ded in a larger circuit allowing one to model complex
systems from simple constituents.

4 CELLULAR DEVELOPMENT

Development of a system from one state to another
in a controlled manor usually involves feedback to as-
sert such control. Purely chemical systems such as the
Belousov-Zhabotinskii (BZ) reaction network [10] and
multi-cellular networks such as Drosophila sp. differen-
tiation [3] use feedback to control the system’s develop-
ment.

During development to of the fruit fly embryo, Dro-
sophila sp. , one can image a series of bands develop-
ing along the major axis of the growing larva–a graph-
ical indicator of the underlying cellular differentiation
in progress. Figure 3 presents the control network re-
sponsible for cellular differentiation in Drosophila sp.
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Figure 3: Developmental control circuit derived by Das-
sow [3] Lower case letters are mRNA (gene products)
while upper case letters denote proteins. Arrows indi-
cate places where a compound promotes the production
of another compound while filled circles denote places
where a compound represses the production of another
species.
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Figure 4: A 10 by 10 grid of cells starting with an ini-
tial noisy, oscillatory level of WG differentiates into WG
producing and HH producing populations. The plot on
the left depicts 5 layers of WG producing cells while the
right contour plot depicts 5 layers of HH producing cells
at the same time point. Initially the system was started
with 10% rms. random noise in WG superimposed over
the initial conditions.

[3]. Though complex, this network typically bifurcates
into one of two states. If a cell is producing the gene
product wg then the protein WG will likely be produced
as well. The WG protein is exported into the cellular
environment and picked up by neighboring cells where
it can promote the expression of the gene product en.
The en gene product represses the production of wg and
puts the cell into a different state from a cell producing
WG, specifically into a state where it is producing and
expressing HH. Thus, cells will typically be producing ei-
ther WG or HH with a small percentage of cells producing
both of these proteins as the switch from expressing one
gene to another.

Actual simulations of the Drosophila sp. network were
carried out as follows. The network was converted to an
electrical circuit using analogs for chemical reactions,
material storage, promotion, repression, degradation and
diffusion. Both simple kinetic and Michaelis-Menton ki-
netics were used in modeling the interactions within a
cell. Once the circuit was created, a 10 by 10 grid of
cells embedded within a diffusion limited environment
was created, again as a circuit. The diffusion network in
which the cells are embedded can be represented to any
numerical order by a resistor-capacitor network where
resistance parameters are directly proportional to chem-
ical diffusion rates. For this work, second order accuracy
was used in the spatial resolution of the diffusion net-
work. Fundamental constants like reaction rates, enzy-
matic turnover rates and diffusion coefficients were pa-
rameterized within this circuit. This parameterization
allows the optimization framework to alter parameters
between simulation runs in order to explore the phase
space for this system.

As an example of one realization in simulating the
cellular development, Figure 5 depicts concentration con-
tour plots of the species WG and HH. Initially, the sys-
tem was started with zero concentration of the exported
species, PH, PTC and HH and an oscillatory level of WG.
This initial oscillatory state represents the initial bias
that anterior-posterior, dorso-ventral patterning hierar-
chies initiate in the developing embryo. [4] Additionally,
a 10% rms. random noise was added to the WG initial
conditions to simulate disturbances of the system from
an ideal starting state. Such noise was also parame-
terized in the circuit and varied to gauge system ro-
bustness. The simulation proceeded forward in time to
model several hours of embryonic development. At the
end of the simulation, the striation pattern was exam-
ined to determine if the embryo successfully developed
and maintained its appropriate banded structure. Phys-
ically, the striations in concentration shown in figure 5
represent layers of cells becoming WG producing or HH
producing over time an example of cellular differenti-
ation. Incomplete or missing bands would represent a
failure in differentiation.
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Figure 5: Noise in the initial WG concentration field sig-
nificantly reduces the probability of successful differen-
tiation. Error bars represent 99% confidence intervals
around the mean probability of successful differentia-
tion based on a binomial distribution (i.e. a pass, fail
experiment).

While the full model system has 52 unknown pa-
rameters, this was reduced to a subset of 26 parameters
using a model sensitivity analysis. This subset of param-
eters included: expression rates, enzymatic turn-over
rates, reaction and diffusion rates and noise levels. A
design of experiments approach was used to understand
how this collection of state variables affects the result-
ing system. Using the Dakota optimization framework,
the problem parameter space was explored using latin-
hypercube sampling with over individual 50,000 simula-
tions performed.

Figure 5 presents the probability of successfully dif-
ferentiating given a specific level of initial random noise.
On the leftmost side of this graph, at 0% noise, one
finds the unperturbed system which successfully differ-
entiates about 15% of the time. This 15% probability is
relative to the search space used for unknown parameter
estimation in this problem. As we used a large search
space only a small fraction of that space proved viable
for embryonic development. When noise was added to
the system, the volume of viable parameter sets leading
to successful embryonic development decreased quickly.
Noise levels of 0.05 and 0.10 are realistic concentration
fluctuations on the time scale of differentiation; higher
levels were explored to fully understand the trend.

5 CONCLUSION

Though still in development, this biological circuit
simulator has the potential to handle large and complex

problems. Depending on the type of data available, one
can cast problems as digital or analog circuits and eas-
ily simulate many replica of a single circuit interacting
with a collection of others. Through the coupling to an
optimization framework, one can explore the dynamics
of multiple cellular networks or of entire cell cultures
elucidating governing parameters as well. Here, mulit-
cellular coupling demonstrated that the Drosophila sp.
differentiation network is very sensitive to initial noise.
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